Forecasting Bankruptcy with Incomplete Information

نویسندگان

  • Xin Xu
  • Yongjun Tang
  • Ke Wang
چکیده

We propose new specifications that explicitly account for information noise in the input data of bankruptcy hazard models. The specifications are motivated by a theory of modeling credit risk with incomplete information (Duffie and Lando [2001]). Based on over 2 million firm-months of data during 1979-2012, we demonstrate that our proposed specifications significantly improve both insample model fit and out-of-sample forecasting accuracy. The improvements in forecasting accuracy are persistent throughout the 10-year holdout periods. The improvements are also robust to empirical setup, and are more substantial in cases where information quality is a more serious problem. Our findings provide strong empirical support for using our proposed hazard specifications in credit risk research and industry applications. They also reconcile conflicting empirical results in the literature. JEL Codes: C41, G17, G33.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bankruptcy Prediction with Industry Effects

This paper investigates the forecasting accuracy of bankruptcy hazard rate models for U.S. companies over the time period 1962–1999 using both yearly and monthly observation intervals. The contribution of this paper is multiple-fold. One, using an expanded bankruptcy database we validate the superior forecasting performance of Shumway’s (2001) model as opposed to Altman (1968) and Zmijewski (19...

متن کامل

Applying Variable Deletion Strategies in Bankruptcy Studies to Capture Common Information and Increase Their Reality

In financial distress studies selection of variable is commonly basedon the success of variables in variable sets employed in earlierbankruptcy studies, suggestions in the literature or an accompanyingdata reduction in a large set of variables. If seemingly different variablesets exhibit a strong relationship then heterogeneous variable setscapture common information. Canonical correlation anal...

متن کامل

Bankruptcy Prediction in Norway: A Comparison Study

In this paper we develop statistical models for bankruptcy prediction of Norwegian firms in the limited liability sector using annual balance sheet information. We fit generalized linear-, generalized linear mixedand generalized additive models in a discrete hazard setting. It is demonstrated that careful examination of the functional relationship between the explanatory variables and the proba...

متن کامل

Firm Bankruptcy Prediction: A Bayesian Model Averaging Approach

I develop a new predictive approach using Bayesian model averaging to account for incomplete knowledge of the true model behind corporate bankruptcy. I find that uncertainty over the correct model is empirically large, with far fewer variables significant predictors of bankruptcy compared to conventional approaches. Only the ratio of total liabilities to total assets and the volatility of marke...

متن کامل

Ensembles of Local Linear Models for Bankruptcy Analysis and Prediction

Bankruptcy prediction is an extensively researched topic. Also ensemble methodology has been applied to it. However, the interpretability of the results, so often important in practical applications, has not been emphasized. This paper builds ensembles of locally linear models using a forward variable selection technique. The method applied to four datasets provides information about the import...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014